274 research outputs found

    Multivariate calibration of antioxidant activity of M. charantia fruits and its fourier transform infrared spectroscopy based fingerprinting

    Get PDF
    Momordica charantia is widely consumed edible fruit. The food and pharmaceutical industries use it as a natural antioxidant. However, the quality control of M. charantia-based medicinal products is questionable due to the complexity of metabolites in this fruit. Hence, this study has developed a statistical model in predicting the antioxidant value through the 2, 2-diphenyl-1 picrylhydrazyl radical scavenging activity and ferric reducing antioxidant power based on infrared spectroscopy with attenuated total reflectance. This technique was reliably used for quality control. Six ethanol extracts (0, 20, 40, 60, 80, and 100% in water) of this plant’s fruit were prepared. The radical scavenging and ferric reducing antioxidant power activities were measured and the chemical profiling of the extracts was fingerprinted by infrared spectroscopy between 4,000 and 600 cm−1 at a resolution of 4 cm−1. Statistical analysis was developed by correlating the bioactivity and infrared spectra of each extract using orthogonal partial least square discriminant analysis. The C–N, C=O, C–O, C–H, and OH infrared signals were positively correlated with biological activity. The antioxidant activity of the fruit of M. charantia may be due to the presence of several antioxidants that work synergistically

    Cytotoxic, anti-inflammatory and adipogenic effects of selected flavonoids on cell lines

    Get PDF
    Naturally-occurring flavonoids have tremendous potential for producing of new therapeutic agents that provide many benefits to mankind.This study focused on the evaluation of the in vitro cytotoxic, anti-inflammatory and adipocyte differentiation effects of the selected flavonoids which were inophyllum D, calanone, and isocordataoblongic acid from Calophyllumsymingtonianum as well as morelloflavone from Garciniaprainiana on MCF 7 human breast cancer cells, RAW 264.7 macrophages and 3T3-L1 pre-adipocytes respectively. The cytotoxicity study on MCF 7 human breast cancer cells was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Meanwhile, the study of anti-inflammatory effects in RAW 264.7 macrophages and adipogenic effects on 3T3-L1 pre-adipocytes were conducted through nitrite determination assay and induction of adipocyte differentiation respectively. In the cytotoxicity study, inophyllum D was the only compounds that exhibited significant cytotoxic effect against MCF 7 human breast cancer with IC50 of 84 μg/mL. Further, all the compounds have shown anti-inflammatory effects in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages with inhibition of nitrite concentration as compared to the positive control. Besides, all the compounds in the range of the tested concentrations also produced adipogenic effects on 3T3-L1 pre-adipocytes and this may suggest that they exhibited potential anti-hyperglycemic property which mimicking the insulin action. Thus, this study may provide significant implication in the discovery of the potential of these selected flavonoids as alternative anti-cancer, anti-inflammatory and anti-hyperglycemic drugs

    Flavonoids and triterpenes from the leaves of artocarpus fulvicortex

    Get PDF
    Five flavonoids, 5-hydroxy-(6:7,3:4)-di(2,2- dimethylpyrano)flavone 1, carpachromene 2, cycloartocarpesin 3, norartocarpetin 4 and 2′-hydroxy-4,4′,6′- trimethoxychalcone 5, along with three triterpenes, friedelin 6, lupeol 7 and β-sitosterol 8 were isolated for the first time from the leaves of Artocarpus fulvicortex F.M. Jarrett. The structures of these compounds were established by analysis of their spectroscopic (1D and 2D NMR) and spectrometric (MS) data, as well as by comparison of these with those reported in the literature

    Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application

    Get PDF
    Raloxifene hydrochloride, a highly effective drug for the treatment of invasive breast cancer and osteoporosis in post-menopausal women, shows poor oral bioavailability of 2%. The aim of this study was to develop, statistically optimize, and characterize raloxifene hydrochloride-loaded transfersomes for transdermal delivery, in order to overcome the poor bioavailability issue with the drug. A response surface methodology experimental design was applied for the optimization of transfersomes, using Box-Behnken experimental design. Phospholipon ® 90G, sodium deoxycholate, and sonication time, each at three levels, were selected as independent variables, while entrapment efficiency, vesicle size, and transdermal flux were identified as dependent variables. The formulation was characterized by surface morphology and shape, particle size, and zeta potential. Ex vivo transdermal flux was determined using a Hanson diffusion cell assembly, with rat skin as a barrier medium. Transfersomes from the optimized formulation were found to have spherical, unilamellar structures, with a homogeneous distribution and low polydispersity index (0.08). They had a particle size of 13

    Formulation and optimization of raloxifene loaded nanotransfersomes by response surface methodology for transdermal drug delivery

    Get PDF
    Raloxifene HCl loaded transfersomes were fabricated, optimized, and characterized as carrier for transdermal delivery to overcome the poor bioavailabilty issue with the drug. Response surface methodology (RSM) was applied for optimization of the formulation with Box-Behnken experimental design. Phospholipid PC90G (A), sodium deoxycholate (SDC) (B) and sonication time (C), each at three levels, were selected as independent variables while entrapment efficiency (EE%) (Y1), vesicle size (Y2), and transdermal flux (Y3) were the response variables. The optimized formulation was further characterized for vesicular size distribution, shape, surface morphology, and zeta-potential. Response variables data were analyzed by Design expert® software and the best model for all three response variables was found to be quadratic. Formulation No13 with composition of 300mg PC90G (A), 35mg SDC (B) and 15min sonication time (C) was predicted as the optimized formulation. The optimized formulation resulted a particle size of 134±9.0 nm with 91±4.9% EE%, 6.5±1.1μg/cm2/h transdermal flux, and -2.61±0.5 mV zeta potential. Transmission electron microscopy, scanning electron microscopy, and dynamic light scattering study defined transfersomes as spherical,unilamellar structures with a homogenous distribution and low polydispersity index (0.080±0.021). Transfersomal formulation proved significantly superior in terms of amount of drug permeated and deposited in the skin, with an enhancement ratio of 6.25±1.5 and 9.25±2.4 when compared with conventional liposomes and ethanolic phosphate buffer solution of the drug respectively. Confocal scanning laser microscopy proved an enhanced permeation of coumarin-6 loaded transfersomes to the deeper layers of the skin (160 μm) as compared to the rigid liposomes (60 μm). These in-vitro findings proved that raloxifene HCl loaded transfersomal formulation could be a superior alternative to oral delivery of the drug

    Transdermal permeation mechanism of sodium deoxycholate aided nano-transfersomes by Differentail Sacnning Calorimetry (DSC)

    Get PDF
    Transfersomes are lipid based nano-vesicles made of phospholipid and surfactant. Their drug permeation mechanism through the skin has been attributed to the moisture seeking tendency (xerophobia) of the lipid vesicles followed by destabilization of lipid bi-layer in the stratum corneum (SC) by surfactant1. However, structural changes of SC due to surfactant need further elucidation to know the specific role of that surfactant in doing so. The objective of this study was to evaluate drug permeation mechanism of raloxifene loaded nano-transfersomes containing sodium deoxycholate used as a surfactant. Phospholipon® 90G was used as a lipid composition in the nano-formulation2. Three different types of skin i.e. mice, guineapig, and rabbit were used for this study. The SC was detached from the rest of the skin layers with chemical treatment, thoroughly washed, and kept for drying in a vacuum desiccator. The SC samples were subjected to an ex-vivo permeation study of the transfersomal formulation for 8 hours. A control sample was prepared in a similar way, without any formulation treatment. A sample of the SC section was cut, sealed in aluminum hermetic pans and scanned using DSC at a scanning rate of 5°C per minute over the range of 25°C–125°C. The characteristic bi-layer lipid and keratin transition peaks found in the control SC samples were: 75°C, 78°C, and 95°C for mice; 820C, 900C, and 990C for guineapig; and 840C, 920C, 990C for rabbit3. However, upon treatment with sodium deoxycholate aided raloxifene nano-transfersomes, most of the peaks were shifted towards lower melting points and some of them were disappeared. This finding confirmed disruption of lipid bi-layer and denaturation of keratin in the SC layer of the investigated skin samples by nano-transfersomes with sodium deoxycholate. It also established the role of sodium deoxycholate in transdermal permeation of drug loaded nano-transfersomes formulation
    corecore